口腔生化学分野研究室

医歯学系 教授 照沼 美穂 TERUNUMA Miho

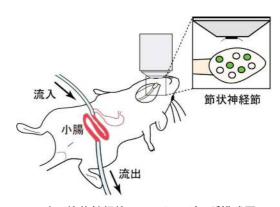
医歯学系 助教 市木 貴子 ICHIKI Takako

専門分野

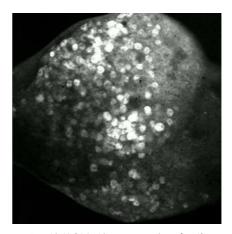
神経科学、生化学

医療・健康・福祉

消化管の感覚メカニズムの解明 in vivo イメージング実験系の構築


キーワード in vivo イメージング、消化管感覚、飲水抑制、迷走神経

研究の目的、概要、期待される効果


適切な摂食飲水量の調節は、生物が生きる 上で必要不可欠です。 摂食飲水行動の抑制・ 終了制御には消化管での栄養素や浸透圧の感 知が必要不可欠であることが示唆されてきま したが、そのメカニズムには不明な点が多く 残されています。

我々は、消化管の感覚受容に主要な役割を 果たす迷走神経、背髄神経の活動をリアルタ イムで観察するために、それぞれの求心性感 覚神経節である節状神経節、背髄後根神経節 のin vivoカルシウムイメージングの実験系を 確立しました。これまでに、このイメージン グ実験系を用いて、腸管内への水による低浸 透圧刺激に特異的に反応する神経群を見出し ています。

この独自に確立したイメージング実験系を 用いることで、各種栄養素の感知メカニズム の解明や、消化管におけるGABA受容体など の神経伝達物質受容体の役割等を明らかにし ていきたいと考えています。

マウス節状神経節in vivoイメージング模式図

マウス節状神経節のイメージング画像

関連する 知的財産 論文 等 The sensory representation and detection mechanisms of gut osmolality (Ichiki et al., Nature, 2022)

アピールポイント

消化管を支配する迷走神経の神経節、あるい は瞀髄後根神経節のin vivo イメージングの実 験系を独自に確立し、消化管感覚の感知メカニ ズムの解明を目指しています。

つながりたい分野(産業界、自治体等)

各種栄養素、GABA産生乳酸菌等を扱う食 品・医薬品・化学関連企業